Calling Rust from the Frontend
このコンテンツはまだ日本語訳がありません。
This document includes guides on how to communicate with your Rust code from your application frontend. To see how to communicate with your frontend from your Rust code, see Calling the Frontend from Rust.
Tauri provides a command primitive for reaching Rust functions with type safety, along with an event system that is more dynamic.
Commands
Tauri provides a simple yet powerful command
system for calling Rust functions from your web app.
Commands can accept arguments and return values. They can also return errors and be async
.
Basic Example
Commands can be defined in your src-tauri/src/lib.rs
file.
To create a command, just add a function and annotate it with #[tauri::command]
:
#[tauri::command]fn my_custom_command() { println!("I was invoked from JavaScript!");}
You will have to provide a list of your commands to the builder function like so:
#[cfg_attr(mobile, tauri::mobile_entry_point)]pub fn run() { tauri::Builder::default() .invoke_handler(tauri::generate_handler![my_custom_command]) .run(tauri::generate_context!()) .expect("error while running tauri application");}
Now, you can invoke the command from your JavaScript code:
// When using the Tauri API npm package:import { invoke } from '@tauri-apps/api/core';
// When using the Tauri global script (if not using the npm package)// Be sure to set `app.withGlobalTauri` in `tauri.conf.json` to trueconst invoke = window.__TAURI__.core.invoke;
// Invoke the commandinvoke('my_custom_command');
Defining Commands in a Separate Module
If your application defines a lot of components or if they can be grouped,
you can define commands in a separate module instead of bloating the lib.rs
file.
As an example let’s define a command in the src-tauri/src/commands.rs
file:
#[tauri::command]pub fn my_custom_command() { println!("I was invoked from JavaScript!");}
In the lib.rs
file, define the module and provide the list of your commands accordingly;
mod commands;
#[cfg_attr(mobile, tauri::mobile_entry_point)]pub fn run() { tauri::Builder::default() .invoke_handler(tauri::generate_handler![commands::my_custom_command]) .run(tauri::generate_context!()) .expect("error while running tauri application");}
Note the commands::
prefix in the command list, which denotes the full path to the command function.
The command name in this example is my_custom_command
so you can still call it by executing invoke("my_custom_command")
in your frontend, the commands::
prefix is ignored.
WASM
When using a Rust frontend to call invoke()
without arguments, you will need to adapt your frontend code as below.
The reason is that Rust doesn’t support optional arguments.
#[wasm_bindgen]extern "C" { // invoke without arguments #[wasm_bindgen(js_namespace = ["window", "__TAURI__", "core"], js_name = invoke)] async fn invoke_without_args(cmd: &str) -> JsValue;
// invoke with arguments (default) #[wasm_bindgen(js_namespace = ["window", "__TAURI__", "core"])] async fn invoke(cmd: &str, args: JsValue) -> JsValue;
// They need to have different names!}
Passing Arguments
Your command handlers can take arguments:
#[tauri::command]fn my_custom_command(invoke_message: String) { println!("I was invoked from JavaScript, with this message: {}", invoke_message);}
Arguments should be passed as a JSON object with camelCase keys:
invoke('my_custom_command', { invokeMessage: 'Hello!' });
Arguments can be of any type, as long as they implement serde::Deserialize
.
The corresponding JavaScript:
invoke('my_custom_command', { invoke_message: 'Hello!' });
Returning Data
Command handlers can return data as well:
#[tauri::command]fn my_custom_command() -> String { "Hello from Rust!".into()}
The invoke
function returns a promise that resolves with the returned value:
invoke('my_custom_command').then((message) => console.log(message));
Returned data can be of any type, as long as it implements serde::Serialize
.
Returning Array Buffers
Return values that implements serde::Serialize
are serialized to JSON when the response is sent to the frontend.
This can slow down your application if you try to return a large data such as a file or a download HTTP response.
To return array buffers in an optimized way, use tauri::ipc::Response
:
use tauri::ipc::Response;#[tauri::command]fn read_file() -> Response { let data = std::fs::read("/path/to/file").unwrap(); tauri::ipc::Response::new(data)}
Error Handling
If your handler could fail and needs to be able to return an error, have the function return a Result
:
#[tauri::command]fn login(user: String, password: String) -> Result<String, String> { if user == "tauri" && password == "tauri" { // resolve Ok("logged_in".to_string()) } else { // reject Err("invalid credentials".to_string()) }}
If the command returns an error, the promise will reject, otherwise, it resolves:
invoke('login', { user: 'tauri', password: '0j4rijw8=' }) .then((message) => console.log(message)) .catch((error) => console.error(error));
As mentioned above, everything returned from commands must implement serde::Serialize
, including errors.
This can be problematic if you’re working with error types from Rust’s std library or external crates as most error types do not implement it.
In simple scenarios you can use map_err
to convert these errors to String
s:
#[tauri::command]fn my_custom_command() -> Result<(), String> { std::fs::File::open("path/to/file").map_err(|err| err.to_string())?; // Return `null` on success Ok(())}
Since this is not very idiomatic you may want to create your own error type which implements serde::Serialize
.
In the following example, we use the thiserror
crate to help create the error type.
It allows you to turn enums into error types by deriving the thiserror::Error
trait.
You can consult its documentation for more details.
// create the error type that represents all errors possible in our program#[derive(Debug, thiserror::Error)]enum Error { #[error(transparent)] Io(#[from] std::io::Error)}
// we must manually implement serde::Serializeimpl serde::Serialize for Error { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::ser::Serializer, { serializer.serialize_str(self.to_string().as_ref()) }}
#[tauri::command]fn my_custom_command() -> Result<(), Error> { // This will return an error std::fs::File::open("path/that/does/not/exist")?; // Return `null` on success Ok(())}
A custom error type has the advantage of making all possible errors explicit so readers can quickly identify what errors can happen.
This saves other people (and yourself) enormous amounts of time when reviewing and refactoring code later.
It also gives you full control over the way your error type gets serialized.
In the above example, we simply returned the error message as a string, but you could assign each error a code
so you could more easily map it to a similar looking TypeScript error enum for example:
#[derive(Debug, thiserror::Error)]enum Error { #[error(transparent)] Io(#[from] std::io::Error), #[error("failed to parse as string: {0}")] Utf8(#[from] std::str::Utf8Error),}
#[derive(serde::Serialize)]#[serde(tag = "kind", content = "message")]#[serde(rename_all = "camelCase")]enum ErrorKind { Io(String), Utf8(String),}
impl serde::Serialize for Error { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::ser::Serializer, { let error_message = self.to_string(); let error_kind = match self { Self::Io(_) => ErrorKind::Io(error_message), Self::Utf8(_) => ErrorKind::Utf8(error_message), }; error_kind.serialize(serializer) }}
#[tauri::command]fn read() -> Result<Vec<u8>, Error> { let data = std::fs::read("/path/to/file")?; Ok(data)}
In your frontend you now get a { kind: 'io' | 'utf8', message: string }
error object:
type ErrorKind = { kind: 'io' | 'utf8'; message: string;};
invoke('read').catch((e: ErrorKind) => {});
Async Commands
Asynchronous commands are preferred in Tauri to perform heavy work in a manner that doesn’t result in UI freezes or slowdowns.
If your command needs to run asynchronously, simply declare it as async
.
When working with borrowed types, you have to make additional changes. These are your two main options:
Option 1: Convert the type, such as &str
to a similar type that is not borrowed, such as String
.
This may not work for all types, for example State<'_, Data>
.
Example:
// Declare the async function using String instead of &str, as &str is borrowed and thus unsupported#[tauri::command]async fn my_custom_command(value: String) -> String { // Call another async function and wait for it to finish some_async_function().await; value}
Option 2: Wrap the return type in a Result
. This one is a bit harder to implement, but works for all types.
Use the return type Result<a, b>
, replacing a
with the type you wish to return, or ()
if you wish to return null
, and replacing b
with an error type to return if something goes wrong, or ()
if you wish to have no optional error returned. For example:
Result<String, ()>
to return a String, and no error.Result<(), ()>
to returnnull
.Result<bool, Error>
to return a boolean or an error as shown in the Error Handling section above.
Example:
// Return a Result<String, ()> to bypass the borrowing issue#[tauri::command]async fn my_custom_command(value: &str) -> Result<String, ()> { // Call another async function and wait for it to finish some_async_function().await; // Note that the return value must be wrapped in `Ok()` now. Ok(format!(value))}
Invoking from JavaScript
Since invoking the command from JavaScript already returns a promise, it works just like any other command:
invoke('my_custom_command', { value: 'Hello, Async!' }).then(() => console.log('Completed!'));
Channels
The Tauri channel is the recommended mechanism for streaming data such as streamed HTTP responses to the frontend. The following example reads a file and notifies the frontend of the progress in chunks of 4096 bytes:
use tokio::io::AsyncReadExt;
#[tauri::command]async fn load_image(path: std::path::PathBuf, reader: tauri::ipc::Channel<&[u8]>) { // for simplicity this example does not include error handling let mut file = tokio::fs::File::open(path).await.unwrap();
let mut chunk = vec![0; 4096];
loop { let len = file.read(&mut chunk).await.unwrap(); if len == 0 { // Length of zero means end of file. break; } reader.send(&chunk).unwrap(); }}
See the channels documentation for more information.
Accessing the WebviewWindow in Commands
Commands can access the WebviewWindow
instance that invoked the message:
#[tauri::command]async fn my_custom_command(webview_window: tauri::WebviewWindow) { println!("WebviewWindow: {}", webview_window.label());}
Accessing an AppHandle in Commands
Commands can access an AppHandle
instance:
#[tauri::command]async fn my_custom_command(app_handle: tauri::AppHandle) { let app_dir = app_handle.path_resolver().app_dir(); use tauri::GlobalShortcutManager; app_handle.global_shortcut_manager().register("CTRL + U", move || {});}
Accessing Managed State
Tauri can manage state using the manage
function on tauri::Builder
.
The state can be accessed on a command using tauri::State
:
struct MyState(String);
#[tauri::command]fn my_custom_command(state: tauri::State<MyState>) { assert_eq!(state.0 == "some state value", true);}
#[cfg_attr(mobile, tauri::mobile_entry_point)]pub fn run() { tauri::Builder::default() .manage(MyState("some state value".into())) .invoke_handler(tauri::generate_handler![my_custom_command]) .run(tauri::generate_context!()) .expect("error while running tauri application");}
Accessing Raw Request
Tauri commands can also access the full tauri::ipc::Request
object which includes the raw body payload and the request headers.
#[derive(Debug, thiserror::Error)]enum Error { #[error("unexpected request body")] RequestBodyMustBeRaw, #[error("missing `{0}` header")] MissingHeader(&'static str),}
impl serde::Serialize for Error { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::ser::Serializer, { serializer.serialize_str(self.to_string().as_ref()) }}
#[tauri::command]fn upload(request: tauri::ipc::Request) -> Result<(), Error> { let tauri::ipc::InvokeBody::Raw(upload_data) = request.body() else { return Err(Error::RequestBodyMustBeRaw); }; let Some(authorization_header) = request.headers().get("Authorization") else { return Err(Error::MissingHeader("Authorization")); };
// upload...
Ok(())}
In the frontend you can call invoke() sending a raw request body by providing an ArrayBuffer or Uint8Array on the payload argument, and include request headers in the third argument:
const data = new Uint8Array([1, 2, 3]);await __TAURI__.core.invoke('upload', data, { headers: { Authorization: 'apikey', },});
Creating Multiple Commands
The tauri::generate_handler!
macro takes an array of commands. To register
multiple commands, you cannot call invoke_handler multiple times. Only the last
call will be used. You must pass each command to a single call of
tauri::generate_handler!
.
#[tauri::command]fn cmd_a() -> String { "Command a"}#[tauri::command]fn cmd_b() -> String { "Command b"}
#[cfg_attr(mobile, tauri::mobile_entry_point)]pub fn run() { tauri::Builder::default() .invoke_handler(tauri::generate_handler![cmd_a, cmd_b]) .run(tauri::generate_context!()) .expect("error while running tauri application");}
Complete Example
Any or all of the above features can be combined:
struct Database;
#[derive(serde::Serialize)]struct CustomResponse { message: String, other_val: usize,}
async fn some_other_function() -> Option<String> { Some("response".into())}
#[tauri::command]async fn my_custom_command( window: tauri::Window, number: usize, database: tauri::State<'_, Database>,) -> Result<CustomResponse, String> { println!("Called from {}", window.label()); let result: Option<String> = some_other_function().await; if let Some(message) = result { Ok(CustomResponse { message, other_val: 42 + number, }) } else { Err("No result".into()) }}
#[cfg_attr(mobile, tauri::mobile_entry_point)]pub fn run() { tauri::Builder::default() .manage(Database {}) .invoke_handler(tauri::generate_handler![my_custom_command]) .run(tauri::generate_context!()) .expect("error while running tauri application");}
import { invoke } from '@tauri-apps/api/core';
// Invocation from JavaScriptinvoke('my_custom_command', { number: 42,}) .then((res) => console.log(`Message: ${res.message}, Other Val: ${res.other_val}`) ) .catch((e) => console.error(e));
Event System
The event system is a simpler communication mechanism between your frontend and the Rust. Unlike commands, events are not type safe, are always async, cannot return values and only supports JSON payloads.
Global Events
To trigger a global event you can use the event.emit or the WebviewWindow#emit functions:
import { emit } from '@tauri-apps/api/event';import { getCurrentWebviewWindow } from '@tauri-apps/api/webviewWindow';
// emit(eventName, payload)emit('file-selected', '/path/to/file');
const appWebview = getCurrentWebviewWindow();appWebview.emit('route-changed', { url: window.location.href });
Webview Event
To trigger an event to a listener registered by a specific webview you can use the event.emitTo or the WebviewWindow#emitTo functions:
import { emitTo } from '@tauri-apps/api/event';import { getCurrentWebviewWindow } from '@tauri-apps/api/webviewWindow';
// emitTo(webviewLabel, eventName, payload)emitTo('settings', 'settings-update-requested', { key: 'notification', value: 'all',});
const appWebview = getCurrentWebviewWindow();appWebview.emitTo('editor', 'file-changed', { path: '/path/to/file', contents: 'file contents',});
Listening to Events
The @tauri-apps/api
NPM package offers APIs to listen to both global and webview-specific events.
-
Listening to global events
import { listen } from '@tauri-apps/api/event';type DownloadStarted = {url: string;downloadId: number;contentLength: number;};listen<DownloadStarted>('download-started', (event) => {console.log(`downloading ${event.payload.contentLength} bytes from ${event.payload.url}`);}); -
Listening to webview-specific events
import { getCurrentWebviewWindow } from '@tauri-apps/api/webviewWindow';const appWebview = getCurrentWebviewWindow();appWebview.listen<string>('logged-in', (event) => {localStorage.setItem('session-token', event.payload);});
The listen
function keeps the event listener registered for the entire lifetime of the application.
To stop listening on an event you can use the unlisten
function which is returned by the listen
function:
import { listen } from '@tauri-apps/api/event';
const unlisten = await listen('download-started', (event) => {});unlisten();
Additionally Tauri provides a utility function for listening to an event exactly once:
import { once } from '@tauri-apps/api/event';import { getCurrentWebviewWindow } from '@tauri-apps/api/webviewWindow';
once('ready', (event) => {});
const appWebview = getCurrentWebviewWindow();appWebview.once('ready', () => {});
Listening to Events on Rust
Global and webview-specific events are also delivered to listeners registered in Rust.
-
Listening to global events
src-tauri/src/lib.rs use tauri::Listener;#[cfg_attr(mobile, tauri::mobile_entry_point)]pub fn run() {tauri::Builder::default().setup(|app| {app.listen("download-started", |event| {if let Ok(payload) = serde_json::from_str::<DownloadStarted>(&event.payload()) {println!("downloading {}", payload.url);}});Ok(())}).run(tauri::generate_context!()).expect("error while running tauri application");} -
Listening to webview-specific events
src-tauri/src/lib.rs use tauri::{Listener, Manager};#[cfg_attr(mobile, tauri::mobile_entry_point)]pub fn run() {tauri::Builder::default().setup(|app| {let webview = app.get_webview_window("main").unwrap();webview.listen("logged-in", |event| {let session_token = event.data;// save token..});Ok(())}).run(tauri::generate_context!()).expect("error while running tauri application");}
The listen
function keeps the event listener registered for the entire lifetime of the application.
To stop listening on an event you can use the unlisten
function:
// unlisten outside of the event handler scope:let event_id = app.listen("download-started", |event| {});app.unlisten(event_id);
// unlisten when some event criteria is matchedlet handle = app.handle().clone();app.listen("status-changed", |event| { if event.data == "ready" { handle.unlisten(event.id); }});
Additionally Tauri provides a utility function for listening to an event exactly once:
app.once("ready", |event| { println!("app is ready");});
In this case the event listener is immediately unregistered after its first trigger.
To learn how to listen to events and emit events from your Rust code, see the Rust Event System documentation.
© 2025 Tauri Contributors. CC-BY / MIT